Abstract

The polarization behaviour of electrodes of the type “oxygen, noble metal / stabilized zirconia”, comprising different zirconia-based materials as electrolyte, platinum or gold as metal component and an oxygen containing gas atmosphere, was investigated at elevated temperatures under equilibrium and non-equilibrium conditions by means of impedance spectroscopy. Massive metal contacts were used as part of the working electrodes. Under non-polarized conditions, the experimental results for platinum indicate a basically uniform reaction mechanism in a vast range of temperature and oxygen partial pressure, involving the surface diffusion of dissociatively adsorbed oxygen on platinum towards the electrochemical reaction sites on the electrolyte surface as rate-determining step. The experimental findings for gold are consistent with the occurrence of two competing reaction mechanisms, namely a charge transfer controlled process and a surface diffusion controlled process, each of them prevailing in different regimes of temperature and oxygen partial pressure. Under polarized conditions, a significant decrease of the polarization resistance takes place, followed by the onset of low frequency loops in the impedance spectra. In the case of cathodic polarization, the onset voltage can be correlated with the partial electron conductivity of the electrolyte, thus confirming the hypothesis of direct participation of electronic species of the electrolyte in the electrode reaction under biased conditions. At moderate temperatures, the polarization induced changes in the electrode properties exhibit a slow relaxation behaviour. This can be attributed to the successive annihilation of additional metastable electrochemical reaction sites having been created during the preceding polarization treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.