Abstract
It is evident from the known ionic properties of the slags used in electroslag melting, that the dc melting process must be accompanied by Faradaic reactions on the slag/ingot and slag/electrode interfaces. The present work has determined the magnitude of the overpotentials resulting from concentration polarization at these interfaces, in the case of pure iron/CaF2+Al2O3, CaF2+CaO slags using a galvanostatic pulsing technique in an electrolytic cell. The polarization overpotential existing on an electrode in an operating ESR unit has been measured by the same technique. It is found that the potentials observed on the ESR electrode agree well with the results from the electrolytic cell. The primary anodic process is postulated to be the corrosion of iron, leading to an Fe2+-saturated layer on the anode surface at sufficiently high current densities. The cathodic process is suggested to be the Faradaic reduction of Al3+ or Ca2+, to give a concentration of [Al]Fe or (Ca)slag in the cathode interface region. This observation is supported by the fact that the cathodic potentials with respect to a C/CO reference electrode are close to those predicted from the reactions: (Al2O3)+3C=3CO(g)+2Al(l) or (CaO)+C=CO(g)+Ca(g) At very high current densities both the anodic and cathodic processes may convert to arcs, leading to process instability. The chemical and thermal effects of the overpotentials are briefly discussed and compared with the present results on ESR ingots of pure iron.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.