Abstract

ABSTRACTThere have been increasing interests in lithium rechargeable batteries, especially microbatteries, with rapid development of portable electronic equipments and MEMS(Micro electromechanical systems) technology. In this work, lithium manganese oxide, as a strong candidate for the battery materials, which is more abundant, stable in ambient state and less toxic than the other oxides such as lithium nickel oxides and lithium cobalt oxides, was deposited by rf magnetron sputter. The effect of thermal treatment on the microstructure and electrode characteristics of lithium manganese oxide cathode was investigated. In electrochemical experiment using liquid electrolyte, half-cell failure would be caused by manganese dissolution, degradation of electrolyte materials during charging/discharging process and so on. In this research we focus on interface reaction problem that would affect the cyclability and lifetime of microbattery. In order to reduce the interface reaction during operation, we introduce DLC(Diamond-like-Carbon) film that has high electrical resistivity, mechanical hardness and chemical stability. DLC film was deposited on sputtered lithium manganese oxide electrode by ECRCVD(Electron Cyclotron Resonance Chemical Vapor Deposition). DLC-top-layer LiMn2O4 film was more stable during charging/discharging reaction and higher discharge capacity in wide voltage windows than LiMn2O4 film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.