Abstract

Aqueous zinc-iodine batteries are promising electrochemical energy storage systems due to the high safety and low cost. The application of zinc halide solution as the electrolyte allows the dual-plating mechanism on both electrodes, i.e. the redox reactions of Zn2+/Zn and I2/I- at the anode and cathode, respectively. These solid–liquid conversion processes guarantee excellent reaction kinetics. However, soluble polyiodide (I3-, I5-, etc.) are formed at the cathode either during the oxidation of I- or from the reaction between I- and I2. The dissolution of polyiodide in electrolytes causes rapid loss of charged products, leading to poor coulombic efficiency and fast self-discharge. Herein, we apply the synergistic regulation of electrode and electrolyte to confine the charged products. The conducting polymer polyaniline (PANI) is used as the polyiodide binder. It contains positively charged nitrogen sites, allowing the doping and effective binding of polyiodide anions through electrostatic attraction. At the same time, the complex in zinc halide electrolytes is regulated to eliminate free iodide anions and prevent the reaction with I2 to form more polyiodide. The optimized zinc-iodine aqueous battery delivers excellent rate capability thanks to the facile solid–liquid reactions as well as the high electrical conductivity of PANI. More importantly, it achieves a high coulombic efficiency of 99.2% with the capacity of 2 mAh cm−2 at 6 mA cm−2, and an excellent capacity retention of 99.9% after 1000 cycles is realized upon long-term cycling. The work proposes a potential pathway to realize stable energy storage in aqueous zinc-halogen batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.