Abstract

BackgroundElectroconvulsive therapy (ECT) is an effective treatment for patients with major depressive disorder (MDD), but its underlying neural mechanisms remain largely unknown. The aim of this study was to identify changes in brain connectome dynamics after ECT in MDD and to explore their associations with treatment outcome. MethodsWe collected longitudinal resting-state functional magnetic resonance imaging data from 80 patients with MDD (50 with suicidal ideation [MDD-SI] and 30 without [MDD-NSI]) before and after ECT and 37 age- and sex-matched healthy control participants. A multilayer network model was used to assess modular switching over time in functional connectomes. Support vector regression was used to assess whether pre-ECT network dynamics could predict treatment response in terms of symptom severity. ResultsAt baseline, patients with MDD had lower global modularity and higher modular variability in functional connectomes than control participants. Network modularity increased and network variability decreased after ECT in patients with MDD, predominantly in the default mode and somatomotor networks. Moreover, ECT was associated with decreased modular variability in the left dorsal anterior cingulate cortex of MDD-SI but not MDD-NSI patients, and pre-ECT modular variability significantly predicted symptom improvement in the MDD-SI group but not in the MDD-NSI group. ConclusionsWe highlight ECT-induced changes in MDD brain network dynamics and their predictive value for treatment outcome, particularly in patients with SI. This study advances our understanding of the neural mechanisms of ECT from a dynamic brain network perspective and suggests potential prognostic biomarkers for predicting ECT efficacy in patients with MDD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call