Abstract

Ongoing neurogenesis in the adult hippocampus is thought to play a role in learning and memory processes, and in response to antidepressant treatments. Low doses of irradiation (IRR) produce a significant long-lasting inhibitory effect on hippocampal neurogenesis that correlates with long-lasting behavioral deficits. Here we report that electroconvulsive seizure (ECS), which robustly increases adult neurogenesis in naïve animals, also reverses the disruption of neurogenesis produced by IRR exposure. Moreover, we find that vascular endothelial growth factor (VEGF) is an essential mediator of this effect. Expression of VEGF in the granule cell layer (GCL) of the hippocampus is decreased by IRR, and ECS administration reverses this deficit in VEGF. There is a corresponding alteration in the number of endothelial cells, which express VEGF, in the hippocampal GCL following IRR and ECS. We also find that blockade of VEGF signaling attenuates ECS-induced proliferation, and VEGF infusion partially restores proliferation in irradiated animals. To examine the functional consequences of IRR and ECS on neurogenesis, hippocampus-dependent contextual fear conditioning was assessed. We found that following disruption by IRR, ECS restores contextual learning to baseline levels at time points consistent with its effects on neurogenesis. These findings demonstrate that ECS, in part via induction of VEGF, can reverse long-term neurogenesis deficits resulting from IRR, and that these effects have functional consequences on hippocampus-dependent fear memory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.