Abstract

It is found that the variations in the structure (morphology and microrelief) and chemical composition of surface of heterogeneous ion-exchange membranes as a result of thermal modification have different effects on the current—voltage characteristics and conditions for the generation of electroconvective instability at the membrane/solution interface under intense current modes. After thermal treatment of strongly acidic sulfocation-exchange membrane, which is characterized by a low catalytic activity in the reaction of water dissociation and a high thermal stability of fixed groups, a fraction of conducting surface area increases and the membrane microrelief develops. As a result, the diffusion limiting current density increases and the length of plateau of the current—voltage curve decreases. Therewith, the thickness of the region of electroconvective instability of solution in the near-membrane region increases and the polarization of electromembrane system, at which the mode of unstable electroconvection is reached, decreases. The thermodestruction of strongly basic anion-exchange membranes, conversely, leads to suppression of electroconvection and an increase in the length of plateau of the current—voltage curve due to the formation of fixed weakly basic amino groups, which are catalytically active in the reaction of water dissociation. A linear correlation is found between the dimensions of the region of electroconvective instability and a fraction of weakly basic functional amino groups in the composition of strongly basic membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.