Abstract

Electroconductive properties of zirconia/multiwalled carbon nanotube aerogel composite are investigated. The composite exhibits bulk percolation cluster-like conductivity at wide range of spatial scales. Conductive atomic force microscopy reveals the localized nature of conductive properties of the composite on the micro(nano)scopic scale and the uniformity of current distribution in all conductive areas independently of their size. The presence of unlinked conductive chains and the possibility of their linking by dissociating ions are demonstrated in experiments on registration of I–V curves during the evacuation of the composite impregnated with distilled water. The experimental data make it possible to describe the electrical properties of the composite as the properties of a circuit formed by the parallel connections of numerous voltage dividers arranged in a bulk porous structure. These features make the synthesized composite a promising candidate for use in catalysis and water vapor sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.