Abstract
AbstractA composite polymeric scaffold of gelatin/alginate /graphene is fabricated through freeze‐drying technique. Initially, a hydrogel system comprised of gelatin/alginate (1:1) is prepared, and then the effect of different amounts of graphene carboxyl nanosheets (1,1.5, 2, and 2.5 wt.%) on the resultant structural properties are thoroughly evaluated. The swelling ratio, biodegradability, electrical and mechanical properties of bio‐composite hydrogels are controlled by manipulating the concentration of graphene‐COOH. The significant increase in the electrical conductivity is observed with the addition of 2.5% graphene‐COOH, and the electrical conductivity increased from 8.525 × 10−7 ± 0.01 S cm−1 to 7.644 × 10−4 ± 0.04 S cm−1. Also, the biocomposite hydrogels exhibited compressive and tensile strength ranging from 25 to 382 KPa and 11.4 to 148 KPa with an increase in the concentration of graphene‐COOH. The simplicity, low cost, tunable mechanical properties, and optimal electrical conductivity of the hydrogel system presented in this study highlight its potential as nerve tissue replacement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.