Abstract

This paper is a report on a study which aimed to investigate the effect of different current density, pH, temperature, and cathode-anode combination on the removal of phenol and aldehyde in two samples of actual resin effluent through the process of electrocoagulation using solar energy. Current density 60 A/m(2) and pH 6 proved to be the best levels for both contaminants. As for the effect of temperature, although the highest degree of phenol and aldehyde removal was achieved at 15 °C, 25 °C was taken to be the optimum temperature for economic reasons. The Fe-Fe combination of electrodes was found to be the best as it led to nearly 93% of phenol removal and approximately 95% of aldehyde removal. Also, the effect of electrode combination on energy consumption was studied. It was observed that the Fe-Fe combination consumed the least amount of energy (0.7-4.3 kWh/m(3) of wastewater in the case of phenol and 0.8-4 kWh/m(3) of wastewater in the case aldehyde). Moreover, the Fe-Fe combination brought about the best results in terms of chemical oxygen demand removal: 93% in both cases. Finally, an economic analysis was performed for the electrocoagulation process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.