Abstract
Although electrocoagulation combined with zeolite (ECZ) shows higher efficiency in wastewater treatment, the actual contribution of zeolite particle size has not been fully explored. In this work, the influence of particle size of synthetic zeolite SZ (<90, 90–160, and 160–600 μm) on ECZ treatment of compost leachate with very high organic load is investigated together with different electrode materials (Fe, Al, and Zn), current densities (0.003, 0.009 and 0.018 A/cm2), and contact times (10, 20 and 30 min). The results positively highlight that the largest particle size should be used in ECZ, as it leads to a lower increase in pH and temperature, a higher decrease of chemical oxygen demand (COD) and turbidity, and a lower electrode consumption, while causing more damage to the electrode surface. The estimated energy costs ranged from 3.960 kW/m3–1313.657 kW/m3. The Taguchi L9 orthogonal configuration showed the highest COD and turbidity decrease under the conditions of 160–600 µm zeolite particles. The powder X-ray diffractometer (PXRD) analysis shows that interplanar spacing decreases when smaller and medium SZ particle sizes are used, while this effect was not observed with larger zeolite particle size. SEM-EDS shows that oxygen, silicon, and aluminium are the predominant elements in electrogenerated sludge coupled with zeolite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.