Abstract

Electrochromic tungsten trioxide (WO3) thin films are attracting renewed attention as transmittance-controllable windows for use in automobile, aircraft, and building applications. In order to achieve high electrochromic performance, high cycle stability, and high reliability, the microstructure and compositional homogeneity of WO3 thin films have to be optimized. In this study, non-doped WO3 and TiO2-doped WO3 thin films were fabricated from water-soluble precursors of tungsten and titanium, and their electrochromic response was investigated. Amorphous WO3 and TiO2-doped WO3 thin films were fabricated by calcining the spin-coated films at 573 K. The use of a PEO-PPO-PEO block copolymer as a porogen facilitated the redox reactions occurring on the thin film/electrolyte interface. Although the effect of TiO2-doping on the cycle stability of WO3 thin films has not been fully elucidated, this study demonstrated that TiO2 doping up to 15 mol% effectively enhanced the cycle stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call