Abstract
AbstractPolycationic macrocycles are attractive as they display unique molecular switching capabilities arising from their redox properties. Although diverse polycationic macrocycles have been developed, those based on cationic boron systems remain very limited. We present herein the development of novel polycationic macrocycles by introducing organoboronium moieties into a conjugated organoboron macrocyclic framework. These macrocycles consist of four bipyridylboronium units that are connected by fluorene and either electron‐deficient arylborane or electron‐rich arylamine moieties. Electrochemical studies reveal that the macrocycles undergo reversible multi‐step redox processes with transfer of up to 10 electrons. Switchable electrochromic behavior is demonstrated via spectroelectrochemical studies and the observed color changes are rationalized by correlation with computed electronic transitions using DFT methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.