Abstract

Summary Red phosphorus (RP) is a promising anode material for alkali-ion batteries due to a high theoretical capacity at low potentials when alloying with lithium, sodium, and potassium. Most alloy anode materials display large volume changes during cycling, which can lead to particle fracturing, low Coulombic efficiency, loss of electrical contact, and ultimately poor cycle life. In this paper we outline, through comprehensive electrochemo-mechanical characterization and modeling of the cycling stresses, why RP can be cycled at high current densities without fracture. Application of in situ nanoindentation and powder compression allows for measurement of the elastic, plastic, and fracture properties of RP. In situ transmission electron microscopy observation with extreme conditions (anisotropic ion diffusion and high current density) was used to validate the model, observing no catastrophic failure of RP particles. Electrochemo-mechanical characterization with geometry and stress modeling allows for predictions to be made for application of RP in alkali-ion batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call