Abstract

Fourteen platinum(II) porphyrins with different π-conjugated macrocycles and different electron-donating or electron-withdrawing substituents were investigated as to their electrochemical and spectroscopic properties in nonaqueous media. Eight compounds have the formula (Ar(4)P)Pt(II), where Ar(4)P = the dianion of a tetraarylporphyrin, while six have π-extented macrocycles with four β,β'-fused benzo or naphtho groups and are represented as (TBP)Pt(II) and (TNP)Pt(II) where TBP and TNP are the dianions of tetrabenzoporphyrin and tetranaphthoporphyrin, respectively. Each Pt(II) porphyrin undergoes two reversible one-electron reductions and one to three reversible one-electron oxidations in nonaqueous media. These reactions were characterized by cyclic voltammetry, UV-visible thin-layer spectroelectrochemistry and in some cases by ESR spectroscopy. The two reductions invariably occur at the conjugated π-ring system to yield relatively stable Pt(II) π-anion radicals and dianions. The first oxidation leads to a stable π-cation radical for each investigated porphyrin; but in the case of tetraarylporphyrins containing electron-withdrawing substituents, the product of the second oxidation may undergo an internal electron transfer to give a Pt(IV) porphyrin with an unoxidized macrocycle. The effects of macrocycle structure on UV-visible spectra, oxidation/reduction potentials, and site of electron transfer are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.