Abstract

A carbon-coated nickel magnetic nanoparticles modified glassy carbon electrode (C-Ni/GCE) was fabricated. The carbon-coated nickel magnetic nanoparticles were characterized with transmission electron microscopy (TEM). The electrochemical behaviors of norepinephrine (NE) were investigated on the modified electrode by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The carbon-coated nickel magnetic nanoparticles showed excellent electrocatalytic activity for the electrochemical redox of NE. NE exhibited two couples of well-defined redox peaks on C-Ni/GCE over the potential range from -0.4 to 0.8V in phosphate buffer solution (PBS) (pH=7.0). The redox mechanism for NE was proposed. DPV response of NE on the C-Ni/GCE showed that the catalytic oxidative peak current was linear with the square root concentration of NE in the range of 2.0 x 10(-7) to 8.0 x 10(-5)M, with a detection limit of 6.0 x 10(-8)M. The C-Ni/GCE showed good sensitivity, selectivity and stability for the determination of NE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call