Abstract

The steady-state voltammetric behavior of truncated conical nanopore electrodes (20-200 nm orifice radii) has been investigated in low ionic strength solutions. Voltammetric currents at the nanopore electrode reflect both diffusive and migrational fluxes of the redox molecule and, thus, are strongly dependent on the charge of the redox molecule and the relative concentrations of the supporting electrolyte and redox molecule. In acetonitrile solutions, the limiting current for the oxidation of the positively charged ferrocenylmethyltrimethylammonium ion is suppressed at low supporting electrolyte concentrations, while the limiting current for the oxidation of the neutral species ferrocene is unaffected by the ionic strength. The dependence of the limiting current on the relative concentrations of the supporting electrolyte and redox molecule is accurately predicted by theory previously developed for microdisk electrodes. Anomalous values of the voltammetric half-wave potential observed at very small nanopore electrodes (<50 nm radius orifice radii) are ascribed to a boundary potential between the pore interior and bulk solution (i.e., a Donnan-type potential).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call