Abstract

In the class of NADH:acceptor oxidoreductases, the diaphorase from Bacillus stearothermophilusis a particularly promising enzyme for sensing NADH, and indirectly a great number of analytes, when coupled with a NAD-dependent dehydrogenase as well as for the design of mono- and multienzyme affinity sensors. The design and rational optimization of such systems require devising immobilization procedures that prevent dramatic losses of the enzymatic activity and a full kinetic characterization of the immobilized enzyme system. Two immobilization procedures are described, which involve recognition of the biotinylated diaphorase by a monolayer of neutravidin adsorbed on the electrode surface either directly or through the intermediacy of a monolayer of biotinylated rabbit immunoglobulin. Thorough kinetic characterization of the two systems is derived from cyclic voltammetric responses. A precise estimate of the enzyme coverages is obtained after comparing the enzyme kinetics of the immobilized and the homogeneous system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call