Abstract

Electrochemical analysis is an important skill to teach in chemistry curricula because it is a critical tool in current high-impact chemical research. Electrochemistry enables researchers to analyze a variety of systems extending from molecules to materials that encompass research themes ranging from clean energy to substrate activation in biological systems. Specifically, it can reveal information about catalytic efficiency, the role of catalysts, and the nature of chemical reduction and oxidation (redox) processes. Researchers working in the area of catalysis rely heavily on electrochemistry, using it to identify effective catalysts and to optimize reaction conditions. This talk with describe a laboratory experiment designed for undergraduate chemistry majors. The laboratory experiment begins with an introductory tutorial to electrochemistry by guiding students through the use of several electrochemical techniques using the ferricyanide/ferrocyanide redox couple as a model system. The techniques covered in the tutorial include cyclic voltammetry, differential pulse voltammetry, Tafel analysis, and bulk electrolysis. The protocol then applies these techniques to electrocatalysis by identifying and characterizing catalysts for hydrogen and oxygen generation in the water electrolysis reaction. Electrochemical methods are connected to current chemical research by focusing on catalysis in the context of renewable energy, which is a current societal and curricular imperative. The entire laboratory protocol is suitable for upper-level physical, analytical or inorganic chemistry. Figure 1

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call