Abstract

Electrochemical uranium extraction (EUE) from seawater is a very promising strategy, but its practical application is hindered by the high potential for electrochemical system, as well as the low selectivity, efficiency, and poor stability of electrode. Herein, we developed creatively a low potential strategy for persistent uranium recovery by electrochemistry-assisted in-situ regeneration of oxygen vacancies and Ti(III) active sites coupled with indirect reduction of uranium, finally achieving high selectivity, efficient and persistent uranium recovery. As-designed titanium dioxide rich in oxygen vacancies (TiO2-VO) electrode displayed an EUE efficiency of ∼99.9 % within 180 min at a low potential of 0.09 V in simulated seawater with uranium of 5∼20 ppm. Moreover, the TiO2-VO electrode also showed high selectivity (89.9 %) to uranium, long-term cycling stability and antifouling activity in natural seawater. The excellent EUE property was attributed to the fact that electrochemistry-assisted in-situ regeneration of oxygen vacancies and Ti(III) active sites enhanced EUE cycling process and achieved persistent uranium recovery. The continuous regeneration of oxygen vacancies not only reduced the adsorption energy of U(VI)O22+ but also serve as a storage and transportation channel for electrons, accelerating electron transfer from Ti(III) to U(VI) at solid-liquid interface and promoting EUE kinetic rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call