Abstract

A new D-A-π-A-D molecule (Spiro-BTA) containing two 2,1,3-benzothiadiazole (BTA) as the acceptor (A) and triphenylamine as the donor (D) bridged by a spirobifluorene moiety has been synthesized. The novel D-A molecule shows intense red emission (612 nm) with a high PL quantum yield (Φ(PL) = 0.51) in a solid film. A cyclic voltammogram of Spiro-BTA in 1:2 MeCN:benzene/0.1 M Bu(4)NPF(6) shows two reversible oxidation waves and one reversible reduction wave. The first oxidation wave and reduction wave were assigned as two successive electron transfer peaks separated by ∼50 mV related to the oxidation of the two noninteracting donors and the reduction of the two noninteracting acceptors, respectively. Electrogenerated chemiluminescence (ECL) of Spiro-BTA upon cyclic oxidation and reduction in MeCN:benzene 1:2 shows a very bright and stable red emission that could be seen in a well-lit room. Using a reprecipitation method, well-dispersed organic nanoparticles (NPs) of the Spiro-BTA were prepared in aqueous solution. The nanoparticles were analyzed by dynamic light scattering (DLS) and scanning electron microscopy (SEM), yielding a NP size (without surfactant) of 130 ± 20 nm, while with surfactant, 100 ± 20 nm. Bathochromic shifts of absorption spectra (∼16 ± 2 nm), as compared to that of the dissolved Spiro-BTA in THF, were observed for both NPs in water and as a thin film. While blue shifts (14 ± 2 nm) were observed for the photoluminescence (PL). The PL intensity of the Spiro-BTA nanoparticles was slightly enhanced (Φ(PL) of nanoparticles in water = 48%) over that of the dissolved Spiro-BTA in THF. The ECL of the organic Spiro-BTA nanoparticles in aqueous solution could be observed upon oxidation with tri-n-propylamine as a coreactant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.