Abstract

A novel sensing strategy for sensitive detection of mucin 1 protein (MUC1) and MCF-7 cells based on electrochemiluminescence (ECL) resonance energy transfer (ERET) from bis(2,2'-bipyridine)-(5-aminophenanthroline)ruthenium(II) (Ru1) to graphene oxide (GO) was proposed. The MUC1 aptamer was covalently combined with Ru1 (Ru1-aptamer) using aqueous carbodiimide coupling chemistry. Due to the strong noncovalent interaction between the Ru1-aptamer and GO, the ECL of Ru1 was efficiently quenched because of the ERET. In the presence of a target MUC1 protein, the binding between the Ru1-aptamer and MUC1 disturbed the interaction between the Ru1-aptamer and GO. These interactions led to the release of the Ru1-aptamer from GO, and resulted in the restoration of Ru1 ECL. This was shown to detect MUC1 protein sensitively in a linear range from 64.9 to 1036.8 nM with a detection limit of 40 nM. With further application in the detection of MCF-7 cells, the presented method could respond at concentrations as low as 30 cancer cells per mL. By substituting the aptamer and the corresponding target, this method could be conveniently extended for the sensitive detection of other biomolecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.