Abstract
Four metal-organic frameworks (MOFs) were designed and prepared through a mixed-ligand strategy by controlling the combination of various dicarboxylic acid ligands with invariant center metal and o-phenanthroline heterocyclic ligand. The regulatory effects of ligand electronic band and crystal structure on the electrochemiluminescence (ECL) characteristics of MOFs were verified by experimental results and density functional theory (DFT) calculations. The flexible chain structure of MOF-2 promotes electron transfer between MOF electroactive free radicals and the co-reactant, making it show outstanding ECL characteristics among all of the four MOFs with the luminescence quantum efficiency 8.37 times that of tris(bipyridine)-ruthenium(II) ([Ru(bpy)3]2+). Meanwhile, a new ECL mechanism for MOF luminescent crystal materials with reactive oxygen species in solvents as a co-reactant in the aqueous aerobic environment has been proposed. MOF-2 was selected to construct an ECL sensor for the determination of glucose in human urine samples. This study provides a useful idea for the development and design of new luminescent molecular crystal materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.