Abstract
In this paper, a novel donor-acceptor pair was creatively proposed based on the principle of electrochemiluminescence resonance energy transfer (ECL-RET): luminol immobilized on polyethyleneimine (PEI)-functionalized manganese-based single-atom nanozymes (Mn SANE/PEI-luminol, donor) and a PtCu-grafted hollow metal polydopamine framework (PtCu/h-MPF, acceptor). A quenched ECL immunosensor was constructed for the ultrasensitive analysis of carcinoembryonic antigen (CEA). Mn SANE, as an efficient novel coreaction accelerator with the outstanding performance of significantly activating H2O2 to produce large amounts of ROS, was further modified by the coreactant PEI, which efficiently immobilized luminol to form a self-enhanced emitter. As a result, the electron transport distance was effectively shortened, the energy loss was reduced, and luminol achieved a high ECL efficiency. More importantly, PtCu-grafted h-MPF (PtCu/h-MPF) was proposed as a novel quencher. The UV-vis spectra of PtCu/h-MPF partially overlap with the ECL spectra of Mn SANE/PEI-luminol, which can effectively trigger the ECL-RET behavior between the donor and the acceptor. The multiple quenching effect on Mn SANE/PEI-luminol was achieved, which significantly improved the sensitivity of the immunosensor. The prepared immunosensor exhibited good linearity in the concentration range of 10-5 to 80 ng/mL. The results indicate that this work provides a new method for the early detection of CEA in clinical diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.