Abstract
An electrochemiluminescence-based immunoassay using quantum dots (QDs) as labels for the carcinoembryonic antigen (CEA) was developed using an electrode modified with leafs of nanoporous gold. CEA was initially immobilized on the electrode via a sandwich immunoreaction, and then CdTe quantum dots capped with thioglycolic acid were used to label the second antibody. The intensity of the ECL of the QDs reflects the quantity of CEA immobilized on the electrode. Thus, in the presence of dithiopersulfate as the coreactant, the ECL serves as the signal for the determination of CEA. The intensity of the electroluminescence (ECL) of the electrode was about 5.5-fold higher than that obtained with a bare gold electrode. The relation between ECL intensity and CEA concentration is linear in the range from 0.05 to 200 ng.mL-1, and the detection limit is 0.01 ng.mL-1. The method has the advantages of high sensitivity, good reproducibility and long-term stability, and paves a new avenue for applying quantum dots in ECL-based bioassays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.