Abstract

In this paper we report a transparent bipolar electrode based microfluidic chip-electrochemiluminescence (ECL) system for sensitive detection of folate receptors (FR) on cell membranes. This integrated system consists of a poly(dimethylsiloxane) (PDMS) layer containing a microchannel and a glass bottom sheet with indium tin oxide (ITO) strips as bipolar detectors. The ITO strips are fabricated using a PDMS micromold with carbon ink as a protective layer in place of traditional photoresist. The configuration of the bipolar electrode has great influence on the ECL intensity of Ru(bpy)(3)(2+)/tripropylamine(TPA) system. Further studies show that folic acid (FA) can strongly inhibit the ECL of the Ru(bpy)(3)(2+)/TPA system. Based on specific recognition between FA and FR on cell membrane, this microfluidic chip-ECL system is successfully applied for detecting the level of FR on human cervical tumor (HL-60) cells and MEF cells. It is found that the ECL intensity increases with the number of HL-60 cells in the range of 21 to 3.28 × 10(4) cells/mL. The average level of FR on HL-60 cells is calculated to be 8.05 ± 0.75 × 10(-18) mol/cell. While for MEF cells, it shows a much slower ECL increment than HL-60 cells due to the much lower FR level on MEF cells (5.30 ± 0.61 × 10(-19) mol/cell). Moreover, exocytosis of FA after FR mediated endocytosis was observed according to the change of the ECL signal with the incubation time of HL-60 cells in the FA- Ru(bpy)(3)(2+)/TPA system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.