Abstract

Brazil is the fifth biggest global manufacturer of textiles and the fourth in cotton textile exports. Textile effluents contain organic dyes that are highly recalcitrant and difficult to oxidize by conventional physico-chemical and biological treatments. Mid-sized textile factories require reliable water treatment technologies of small physical foot-print that do no produce solid wastes to treat their manufacturing effluents. Electrochemically-driven technologies emerge as feasible alternative technologies that overcome barriers in the management of these industrial effluents. This work studies the application of electrochemical advanced oxidation processes on the treatment of dye bath effluents containing cotton dye Reactive Blue 4. Electro-Fenton treatment attains complete color removal with an electrical energy per order (EEO) of 7.4kWhm−3order−1, which represents an order of magnitude lower operational expenditure than electrochemical oxidation (54.8kWhm−3order−1). Simultaneous irradiation with UVA light in photoelectron-Fenton systems did not show any effect on RB4 degradation kinetics. But UVA irradiation increased the mineralization achieved after treatment, which enhanced current efficiencies ca. 2-fold respect to electro-Fenton.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.