Abstract

Achieving electrically and/or electrochemically controlled circularly polarized photoluminescence (CPL) is challenging due to the non-electroactive characteristics of most chiral materials and the non-electrosensitive feature of materials' chiroptical signals. Here we found that the CPL of self-assembled conducting polyaniline (PANI) helical microfibers could be reversibly switched by applying an alternating electrical bias. The conducting polymer is not the fluorophore but can transfer its chirality to the coassembled aggregation-induced emission (AIE) fluorescent molecules. The electrochemically switchable CPL is derived from the reversible transformation of the chirality of the polyaniline microfibers, which is probably due to the change in the molecular interchain distance upon doping/dedoping. Subsequently, we have demonstrated double-layer information encryption based on the electrochemically reversible CPL and conductance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.