Abstract
Rapid and accurate determination of disinfection byproducts (DBPs) has become an emerging need for environmental monitoring and has yet to be realized in electrochemical sensors with metal organic framework (MOF)-based materials. In this study, a highly sensitive electrochemical sensor for trichloroacetic acid (TCAA) detection based on iron(II) phthalocyanine (PcFe) and a Zn-based metal organic framework (ZIF-8) composite is fabricated. As an electrode material, ZIF-8 possesses a large surface area and porous structure, which exhibits high absorbability; meanwhile, PcFe (II), as the sensing element, undergoes a reduction process from PcFe (II) to PcFe (I) during the sensing process. In the presence of TCAA, PcFe (I) is reoxidized by TCAA, which shifts the reaction equilibrium and accelerates the electron transfer on the electrode interface. By analyzing the reduction current of PcFe (II), the quantitative detection of TCAA is realized. The sensor shows a limit of detection (LOD) of 1.89 nM, which is superior to other reported TCAA sensors, as well as a high sensitivity (826 μΑ/μM). Moreover, the good selectivity and stability of this sensing platform demonstrate its capability and promise in determination of trace DBPs. The reported sensor provides a new strategy for electrochemical detection of DBPs and could expand the applications of MOFs in emerging technologies for monitoring contaminants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.