Abstract

The fabrication, by an electrochemical process, of a new battery-type electrode material, is presented. Such materials are fabricated by direct current electrodeposition of Ni(OH)2 on lamellar Ni3Si. Microstructure and morphology of Ni(OH)2/Ni3Si electrodes were characterised. Cyclic voltammetry and galvanostatic charge–discharge results revealed that they are battery-type electrodes. Increasing deposition time or decreasing discharge current can significantly increase the areal capacity. The areal capacity of Ni(OH)2/Ni3Si-20 with a discharge current of 20 mA is only 2.8% of that with 1 mA. However, the increasing deposition time will reduce the cyclic stability of the electrodes. The initial areal capacity of Ni(OH)2/Ni3Si-20 is twice that of Ni(OH)2/Ni3Si-10 with a discharge current of 10 mA, but after 1000 cycles, it can only maintain 59.3% of the initial value. This Letter is expected to provide a powerful reference and guidance for the preparation of electrodes with large areal capacity and cycle stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.