Abstract
Abstract Zinc-ion supercapacitors (ZISCs) exhibit great potential to store energy owing to the benefits of high power density and environmentally friendly features. However, solving the drawbacks of low specific energy and poor cyclic performance at high current rates is necessary. Thus, developing better cathode materials is a practical and efficient way to overcome these limitations. This work presents an encouraging design of two-dimensional (2D) graphite ultrathin nanosheets (GUNSs) as a cathode material for ZISCs. The experimental results show that the GUNSs-based cathode material exhibits a wide surface area and rapid charge transformation features. The 2D GUNS as a cathode was tested in three-electrode systems, and it provided an exceptionally high capacitance of 641 F/g at 1 A/g in an aqueous ZnSO4 electrolyte, better than GUNS-N2 (462 F/g at 1 A/g) and pristine graphite (225.8 F/g at 1 A/g). The 2D GUNS has a rate performance of 43.8% at a current density of 20 A/g, better than GUNS-N2 (35.6%) and pristine graphite (8.4%) at the same conditions. Furthermore, a ZISC device was fabricated using GUNSs as cathode and Zn-foil as anode with 1 M ZnSO4 electrolyte (denoted as GUNSs//Zn). The as-fabricated GUNSs//Zn device exhibits an excellent capacitance of 182.5 F/g at 1 A/g with good capacitance retention of 97.2%, which is better than pristine graphite (94.6%), and nitrogen-doped GUNS (GUNS-N2) cathode (95.7%). In addition, the GUNSs//Zn device demonstrated an ultrahigh cyclic life of 10,000 cycles, and 96.76% of capacitance was maintained. Furthermore, the GUNSs//Zn device delivers a specific energy of 64.88 W h/kg at an ultrahigh specific power of 802.67 W/kg and can run a light-emitting diode for practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.