Abstract

The activity of electrochemically oxidized carbon electrode was investigated in the operation of a direct l-ascorbic acid fuel cell anode. The surface oxygen species placed on electrochemically oxidized carbon electrode were analyzed by X-ray photoelectron spectroscopy and cyclic voltammetry. The electrochemical oxidation process of carbon electrode can facilitate the pore-filling process (i.e., wetting) of the electrolyte into the microstructure of the carbon electrode by increasing the number of more polar functional groups on the electrode surface. The electrochemically oxidized carbon electrode exhibited significantly enhanced electro-catalytic oxidation activity of l-ascorbic acid compared to an unmodified carbon electrode. Moreover, the simplified electrode structure using carbon paper without an additional powder-based precious catalyst layer is very favorable in creating percolation network and generates power density of 18 mW/cm 2 at 60 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.