Abstract

Electrocatalytic nitrate reduction reaction (NITRR) is highly desirable for remediating nitrate (NO3-) pollution and producing ammonia (NH3) under mild conditions. To date, great efforts have been made to fabricate selective, efficient, and stable electrocatalysts for NITRR. Among the numerous strategies, single-atom catalysts (SACs) have received extensive interest and investigations due to their cost-effective and maximum atomic utilization. However, the further development of SACs-based NITRR remains hindered by a poor understanding of their in-depth mechanisms. Consequently, this review summarizes the recent advances of SACs for the NITRR, including Cu-SACs, Fe-SACs, Zn-SACs, Co-SACs, and single-atom alloys. In addition, the characterization techniques for SACs and reaction pathways of NITRR are presented to give a robust understanding of SACs-based NITRR. Finally, we analyze the current challenges in fabricating SACs for NITRR, while the key factors for further improving NITRR performances are also examined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call