Abstract

AbstractWe report the first ever use of electrochemically mediated atom transfer radical polymerization (eATRP) employing a bipolar electrochemical method for the fabrication of both gradient and patterned polymer brushes. A potential gradient generated on a bipolar electrode allowed the formation of a concentration gradient of a CuI polymerization catalyst through the one‐electron reduction of CuII, resulting in the gradient growth of poly(NIPAM) brushes from an initiator‐modified substrate surface set close to a bipolar electrode. These polymer brushes could be fabricated in three‐dimensional gradient shapes with control over thickness, steepness, and modified area by varying the electrolytic conditions. Moreover, by site‐selective application of potential during bipolar electrolysis, a polymer brush with a circular pattern was successfully formed. Polymerization was achieved using both a polar monomer (NIPAM) and a nonpolar monomer (MMA) with the eATRP system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call