Abstract
Vanadium dioxide (VO2) undergoes significant optical, electronic, and structural changes as it transforms between the low-temperature monoclinic and high-temperature rutile phases. Recently, alternative stimuli have been utilized to trigger insulator-to-metal transformations in VO2, including electrochemical gating. Here, we prepare and electrochemically reduce mesoporous films of VO2 nanocrystals, prepared from colloidally synthesized V2O3 nanocrystals that have been oxidatively annealed, in a three-electrode electrochemical cell. We observe a reversible transition between infrared transparent insulating phases and a darkened metallic phase by in situ visible-near-infrared spectroelectrochemistry and correlate these observations with structural and electronic changes monitored by X-ray absorption spectroscopy, X-ray diffraction, Raman spectroscopy, and conductivity measurements. An unexpected reversible transition from conductive, reduced monoclinic VO2 to an infrared-transparent insulating phase upon progressive electrochemical reduction is observed. This insulator-metal-insulator transition has not been reported in previous studies of electrochemically gated epitaxial VO2 films and is attributed to improved oxygen vacancy formation kinetics and diffusion due to the mesoporous nanocrystal film structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.