Abstract

Strain is known to enhance the activity of the oxygen reduction reaction in catalytic platinum alloy nanoparticles, whose inactivity is the primary impediment to efficient fuel cells and metal-air batteries. Bragg coherent diffraction imaging (BCDI) was employed to reveal the strain evolution during the voltammetric cycling in Pt-Ni alloy nanoparticles composed of Pt2Ni3, Pt1Ni1, and Pt3Ni2. Analysis of the 3D strain images using a core-shell model shows that the strain as large as 5% is induced on Pt-rich shells due to Ni dissolution. The composition dependency of the strain on the shells is in excellent agreement with that of the catalytic activity. The present study demonstrates that BCDI enables quantitative determination of the strain on alloy nanoparticles during electrochemical reactions, which provides a means to exploit surface strain to design a wide range of electrocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.