Abstract
Nickel oxide thin films and other electrochromic materials receive particular attention due to the great variety of practical applications in energy conservation and in semitransparent optical devices. In this work, nickel thin films were produced by DC magnetron sputtering on ITO substrates. The nickel–ITO thin films were studied by electrochemical techniques, and electrochromic properties were induced in the films after several different cyclic voltammetry runs. The cyclic potential range was set from −400 to 600 mV and the scan rates were varied from 6.6 to 10 mV/s. The electrochromic phenomena was observed just after 80 cycles as derived from voltammograms and color changes in the nickel oxide films were observed close to 100 cycles. The optical properties of as-deposited films and of the ones tested in the electrochemical cell were determined by optical spectrophotometry in the visible range. The structural properties of the films were studied by X-ray diffractometry, scanning and transmission electron microscopy in conventional and high-resolution modes. The electrochemical properties were studied principally by the cyclic voltammetry technique. Noticeable differences in induced electrochromic behavior were observed between the nickel films deposited on two sets of ITO substrates, prepared by DC magnetron sputtering and spray pyrolysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.