Abstract

The nonheme iron(IV) oxo complex [FeIV(O)(tpenaH)]2+ and its conjugate base [FeIV(O)(tpena)]+ [tpena- = N,N,N'-tris(2-pyridylmethyl)ethylenediamine-N'-acetate] have been prepared electrochemically in water by bulk electrolysis of solutions prepared from [FeIII2(μ-O)(tpenaH)2](ClO4)4 at potentials over 1.3 V (vs NHE) using inexpensive and commercially available carbon-based electrodes. Once generated, these iron(IV) oxo complexes persist at room temperature for minutes to half an hour over a wide range of pH values. They are capable of rapidly decomposing aliphatic and aromatic alcohols, alkanes, formic acid, phenols, and the xanthene dye rhodamine B. The oxidation of formic acid to carbon dioxide demonstrates the capacity for total mineralization of organic compounds. A radical hydrogen-atom-abstraction mechanism is proposed with a reactivity profile for the series that is reminiscent of oxidations by the hydroxyl radical. Facile regeneration of [FeIV(O)(tpenaH)]2+/ [FeIV(O)(tpena)]+ and catalytic turnover in the oxidation of cyclohexanol under continuous electrolysis demonstrates the potential of the application of [FeIII(tpena)]2+ as an electrocatalyst. The promiscuity of the electrochemically generated iron(IV) oxo complexes, in terms of the broad range of substrates examined, represents an important step toward the goal of cost-effective electrocatalytic water purification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.