Abstract

A hierarchical porous Ni(OH)2/NiCu electrode was fabricated by a novel electrochemical method, which included brush plating, cyclic voltammetry (CV) treatment, electrochemical dealloying and hydrolysis. We firstly discussed the feasibility of using brushing plating to produce NiCu precursors. Then we found that the CV treatment can be used to yield a roughened NiCu surface; thereafter, the selective dissolution of Cu can be used to further improve the surface area. Through controlling the cycle number and time of dealloying, we can get a hierarchical porous NiCu which exhibit highest hydrogen evolution reaction activity. Subsequently, the obtained hierarchical porous NiCu immersed in 0.1M NiCl2 to get a hierarchical porous Ni(OH)2/NiCu electrode. The influence of immersing time was also discussed. The fabricated hierarchical porous Ni(OH)2/NiCu electrode exhibits higher hydrogen evolution reaction (HER) activity than those of the brush-plated NiCu and porous NiCu electrodes, which can be attributed to the unique hierarchical porous structure and the synergy between the Ni(OH)2 and NiCu surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.