Abstract
N-doped graphene has been extensively explored because of their intriguing properties. However, most of the conventional heat-processed N-doped graphene (HNG) suffer from the poor hydrophilic property and low electric conductivity when using electrode materials. Herein, we present a facile solution-processed strategy to fabricate N-doped graphene through electrochemical exfoliation of graphite in inorganic electrolyte solution. The resulting electrochemically exfoliated N-doped graphene (ENG) has high level of nitrogen (7.9 at.%) and oxygen (16.5 at.%), moreover, excellent electric conductivity (19 s cm−1). As a binder-free electrode material for oxygen reduction reaction (ORR), ENG exhibits much better electroactivity than HNG and electrochemically exfoliated graphene (EG), moreover, much better methanol tolerance and long-term durability than that commercial Pt/C catalyst. The results provide new sights into scalable production of noble metal-free catalyst towards ORR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.