Abstract

Two-dimensional (2D) nanomaterials have been considered as a promising materials platform for next-generation electronics due to their unique electronic, optical, and mechanical properties. Since the first graphene exfoliation method has been reported, other layered materials having the structural analogues with different electrical properties have been further explored to discover semiconducting candidates. For example, semiconducting MoS2 has been widely studied for electronic device applications including transistors, phototransistors, diodes, and logic gates. However, the technological limitations to produce wafer-scale MoS2 thin-films only enable to demonstrate prototype electronic applications. To overcome this limitation of scalability, solution-based processing has been considered as a strong candidate. In particular, molecular intercalation driven electrochemical exfoliation method can produce high quality 2D nanosheets in large quantity without vacuum- or high temperature-related processes. In this article, solution-processed 2D materials will be introduced as a potential platform toward wafer-scale, high-performance electronics and future outlook will be provided as important aspects should be considered to apply this materials platform for the real-world applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call