Abstract

The functionalization of silicon surfaces with organic monolayers, bound through Si–C bonds, is an area of wide interest due to the technological promise of organosilicon hybrid devices, but also to investigate fundamental surface reactivity. In this paper, the use of alkylammonium and alkylphosphonium cations as sources of organic moieties to bind to hydrogen-terminated flat and porous silicon is demonstrated. Tetraalkylammonium, tetraalkyl/arylphosphonium reagents, and alkyl pyridinium salts can be utilized, but trialkylammonium salts cannot as they yield substantial surface oxidation. Under electrochemical conditions, either potentiostatic or galvanostatic modes, alkyl groups derived from the ammonium or phosphonium salts are grafted to the silicon surface and are bound through Si–C bonds. Covalent attachment of the organic monolayers to the surface was demonstrated by XPS, AFM scribing, and FTIR. The mechanism may proceed via reduction of the ammonium salt yielding alkyl radicals, R , which may be reduced to R − and attack surface Si–Si bonds, leading to Si–C bonds, or the formation of silyl anions (≡Si −) under the cathodic conditions followed by nucleophilic attack on the trialkylammonium cation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.