Abstract
Light-activated antimicrobial coatings are currently considered to be a promising approach for the prevention of nosocomial infections. In this work, we present a straightforward strategy for the deposition of a photoactive biocidal organic layer of zinc (tetraamino)phthalocyanine (ZnPcNH2) in an electrochemical oxidative process. The chemical structure and morphology of the resulting layer are widely characterized by microscopic and spectroscopic techniques, while its ability to photogenerate reactive oxygen species (ROS) is investigated in situ by UV–Vis spectroscopy with α-terpinene or 1,3-diphenylisobenzofuran as a chemical trap. It is shown that the ZnPcNH2 photosensitizer retained its photoactivity after immobilization, and that the reported light-activated coating exhibits promising antimicrobial properties towards Staphyloccocus aureus (S. aureus).
Highlights
In recent years, thin layers of organic and/or inorganic photosensitizers have gained wide research interest for application as antimicrobial coatings deposited on the surfaces of objects that are used daily
In the course of the 10 scan cycles of the electrodeposition process, a uniform blue-green (ZnPcNH2 )layer was synthesized on the Indium tin oxide/borosilicate glass (ITO) surface (Figure 1 inset)
ZnPcNH2 photosensitizer was deposited on ITO/glass surface in a
Summary
Thin layers of organic and/or inorganic photosensitizers have gained wide research interest for application as antimicrobial coatings deposited on the surfaces of objects that are used daily. The main advantage of such structures is their remarkable biocidal efficiency against bacteria, viruses, and fungi. This makes them an attractive alternative to classical antimicrobial coatings containing poly(ethylene glycol) chains, silver or copper nanoparticles, quaternary ammonium salts or cations, fluorinated polymers, etc. The antimicrobial action of photoactive layers is based on the formation of so-called reactive oxygen species (ROS), including superoxides, peroxides, and singlet oxygen [3]. Light-activated antimicrobial coatings containing, e.g., phenothiazine, porphyrin, or fullerene photosensitizers have been successfully applied against Staphylococcus aureus, Escherichia coli, Clostridium difficile, Candida albicans, and Pseudomonas aeruginosa [7,8,9,10,11,12,13,14]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.