Abstract
So far, the sol-gel process has been available to prepare precursor gels of bioactive glasses with various compositions. In this report, we described a novel coating method of bioactive gels on a titanium substrate where the sol-gel transition is controlled by applying external electric fields. The application of a constant current of 10 mA/cm2 in an acidic sol containing pre-hydrolyzed tetraethoxysilane, calcium nitrate, and ammonium dihydrogen phosphate led to the deposition of gels on the titanium cathodes due to the generation of OH– by water electrolysis as a catalyst of the sol-gel transition. The obtained gels, which were characterized to be amorphous and consisted of Si, Ca, and P, covered the titanium substrates as a coating. The bioactivity of the gels deposited was confirmed by soaking in a simulated body fluid (SBF) up to 7 days, suggesting that the electrochemically assisted sol-gel process is promising for providing bioactive coatings on metallic implants.Graphical
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.