Abstract

We describe a series of well-defined dendritic−linear block copolymer architectures via the reversible addition−fragmentation chain transfer (RAFT) polymerization technique. Using dendritic chain transfer agents (CTA)s possessing a single dithioester moiety at the focal point, RAFT polymerization was carried out to attach polystyrene (PS) and poly(methyl methacrylate) (PMMA) chains of controlled lengths by kinetic control. To provide electrochemical functionality, the dendritic CTAs were designed with carbazole moieties at the periphery of the structures. The results on the electrochemical polymerization of the carbazole moieties at the periphery of the dendritic component of the block copolymers reveal quantitative cyclic depositions with changes in viscoelastic properties of the deposited films as monitored by the electrochemical quartz crystal microbalance technique. The electroactive dendritic blocks proved to be an effective electrochemically active macromonomer for the electrodeposition of these str...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.