Abstract

The feasibility of using gold electrodes modified with short-chain ssDNA oligonucleotides for determination of uranyl cation is examined. Interaction between UO22+ and proposed recognition layer was studied by means of voltammetric and quartz crystal microbalance measurements. It was postulated that ssDNA recognition layer functions via strong binding of UO22+ to phosphate DNA backbone. The methylene blue was used as a redox marker for analytical signal generation. Biosensor response was based on the difference in electrochemical signal before and after subjecting it to sample containing uranyl ion. The lower detection limit of 30 nmol L−1 for UO22+ was observed for a sample incubation time of 60 min. Proposed ssDNA-modified electrodes demonstrated good selectivity towards UO22+ against common metal cations, with only Pb2+ and Ca2+ showing considerable interfering effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.