Abstract

The electrochemical oxidation of aqueous wastes polluted with 4-nitrocathecol has been studied on boron-doped diamond electrodes in an acidic medium. The voltammetric results showed that 4-nitrocathecol is oxidized in the potential region where the supporting electrolyte is stable. Galvanostatic electrolysis study showed that the oxidation of these wastes in a single-compartment electrochemical flow cell with boron-doped diamond anodes results in the complete mineralization of the organics. Cathecol, benzoquinone, 4-aminocathecol, maleic and oxalic acids have been detected as soluble organics, polymeric product as solid product at the cathode surface and NO3– as mineral product during the electrolysis of 4-nitrocathecol. The electrochemical oxidation of 4-nitrocathecol consists of a sequence of steps: release of NO2 and (or) hydroxylation of the aromatic ring; formation of quinonic compounds; oxidative opening of aromatic ring to form carboxylic acids; and oxidation of carboxylic acids to carbon dioxide. Both direct and mediated oxidation processes are involved in these stages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.