Abstract

The theoretical and electrochemical performance of a novel organic corrosion inhibitor 3,4\(^{\prime }\)-dihydro-3-[2\(^{\prime }\)-mercaptothiazolidine]indol-2-one (DMI), for API 5L Grade B carbon steel in 3.5% NaCl, was evaluated by potentiodynamic polarization (Tafel), electrochemical impedance spectroscopy (EIS) and density functional theory (DFT) for quantum chemical studies. Potentiodynamic studies confirmed that DMI was a mixed organic corrosion inhibitor type which specially affects the cathodic branch. The inhibition efficiencies of reactants, DMI and acetylcysteine followed the following order at \(25{^{\circ }}\hbox {C}\) and 200 ppm: DMI (87%) > isatin (71%) > 2-thiazoline-2-thiol (62%) > acetylcysteine (54%). EIS measurements illustrated the charge transfer controlled corrosion process. The Langmuir adsorption isotherm model of DMI was adopted. Surface studies were performed using scanning electron microscopy. Activation and adsorption thermodynamic parameters of DMI were computed. The magnitude of \(\Delta G^{^{\circ }}_{\mathrm{ads}}\) and the sign of \(\Delta H^{^{\circ }}_{\mathrm{ads}}\) concluded that the adsorption occurred through chemisorption. Quantum chemical calculations of four corrosion inhibitors were used for investigating the molecular structure effect on inhibition efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.