Abstract
AbstractWater treatment technologies are needed that can convert per‐ and polyfluoroalkyl substances (PFAS) into inorganic products (e.g., CO2, F−) that are less toxic than parent PFAS compounds. Research on electrochemical treatment processes such as electrocoagulation and electrooxidation has demonstrated proof‐of‐concept PFAS removal and destruction. However, research has primarily been conducted in laboratory matrices that are electrochemically favorable (e.g., high initial PFAS concentration [μg/L–mg/L], high conductivity, and absence of oxidant scavengers). Electrochemical treatment is also a promising technology for treating PFAS in water treatment residuals from nondestructive technologies (e.g., ion exchange, nanofiltration, and reverse osmosis). Future electrochemical PFAS treatment research should focus on environmentally relevant PFAS concentrations (i.e., ng/L), matrix conductivity, natural organic matter impacts, short‐chain PFAS removal, transformation products analysis, and systems‐level analysis for cost evaluation.Article Impact StatementElectrochemical treatment is capable of destroying per‐ and polyfluoroalkyl substances, but future research should reflect more realistic drinking water sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.