Abstract

A composite film of polyaniline (PAN) nano-networks/ p-aminobenzene sulfonic acid (ABSA) modified glassy carbon electrode (GCE) has been fabricated via an electrochemical oxidation procedure and applied to the electro-catalytic oxidation of uric acid (UA) and ascorbic acid (AA). The ABSA monolayer at GCE surface has been characterized by X-ray photo-electron spectroscopy (XPS) and electrochemical techniques. Atomic force microscopy (AFM), field emission scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS), UV–visible absorption spectra (UV–vis) and cyclic voltammetry (CV) have been used to investigate the PAN-ABSA composite film, which demonstrates the formation of the composite film and the maintenance of the electroactivity of PAN in neutral and even in alkaline media. Due to its different catalytic effects towards the electro-oxidation of UA and AA, the modified GCE can resolve the overlapped voltammetric response of UA and AA into two well-defined voltammetric peaks with both CV and differential pulse voltammetry (DPV), which can be used for the selective and simultaneous determination of these species in a mixture. The catalytic peak currents are linearly dependent on the concentrations of UA and AA in the range of 50–250 and 35–175 μmol l −1 with correlation coefficients of 0.997 and 0.998, respectively. The detection limits for UA and AA are 12 and 7.5 μmol l −1, respectively. Besides the good stability and reproducibility of PAN-ABSA/GCE due to the covalent attachment of ABSA at GCE surface, the modified electrode also exhibits good sensitivity and selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.